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Orthrozanclus elongata n. sp. and 
the significance of sclerite-covered 
taxa for early trochozoan evolution
Fangchen Zhao  1, Martin R. Smith  2, Zongjun Yin  1, Han Zeng  1,3, Guoxiang Li1 & 
Maoyan Zhu1,3

Orthrozanclus is a shell-bearing, sclerite covered Cambrian organism of uncertain taxonomic affinity, 
seemingly representing an intermediate between its fellow problematica Wiwaxia and Halkieria. 
Attempts to group these slug-like taxa into a single ‘halwaxiid’ clade nevertheless present structural 
and evolutionary difficulties. Here we report a new species of Orthrozanclus from the early Cambrian 
Chengjiang Lagerstätte. The scleritome arrangement and constitution in this material corroborates the 
link between Orthrozanclus and Halkieria, but not with Wiwaxia — and calls into question its purported 
relationship with molluscs. Instead, the tripartite construction of the halkieriid scleritome finds a more 
compelling parallel in the camenellan tommotiids, relatives of the brachiopods and phoronids. Such a 
phylogenetic position would indicate the presence of a scleritome in the common ancestor of the three 
major trochozoan lineages, Mollusca, Annelida and Brachiozoa. On this view, the absence of fossil 
Ediacaran sclerites is evidence against any ‘Precambrian prelude’ to the explosive diversification of 
these phyla in the Cambrian, c. 540–530 million years ago.

The Cambrian fossil record is renowned for the morphologically puzzling organisms that it preserves. Such 
taxa often represent long-extinct combinations of characters, offering a unique perspective on the early origin 
of modern body plans – presuming, of course, that relationships with modern groups can be established1. The 
reconstructed origins of the molluscan lineage, for example, have been overhauled in order to accommodate two 
emblematic Cambrian taxa, Halkieria and Wiwaxia2–9. These two genera bear superficially similar sclerites, which 
occur the world over as carbonaceous and mineralized microfossils10–13; the grouping Sachitida was erected to 
reflect this perceived commonality14. The case for phylogenetic proximity was strengthened by the discovery 
of articulated specimens in the Burgess Shale and Sirius Passet Lagerstätten, which showed that the sclerites 
of both taxa were dorsal and imbricating2,15,16. This arguably overlooks some notable differences between the 
two genera – Halkieria has dorsal valves, Wiwaxia bears elongate spines, and the sclerites of the two groups are 
far from identical – but suggestions that these differences might denote a degree of phylogenetic separation17,18 
were soon countered by the description of the Burgess Shale animal Orthrozanclus reburrus, which incorporates 
a single Halkieria-like valve within a spiny non-mineralized scleritome19. The ‘halwaxiid’ clade, incorporating 
Wiwaxia, Orthrozanclus, Halkieria and other sachitids, was erected on the basis that the scleritomes of these 
taxa were consequently homologous. A new species of Orthrozanclus from the Chengjiang lagerstätten, however, 
prompts a re-evaluation of the basis for a halwaxiid grouping, and calls into question the position of Halkieria and 
Orthrozanclus in molluscan evolution.

Results
Systematic Palaeontology. Superphylum Lophotrochozoa

Family Halkieriidae Poulsen 196720.

Remarks. Orthrozanclus falls within the emended diagnosis of Halkieriidae provided by Conway Morris and 
Peel 199516, negating the need for a separate family Orthrozanclidae19.
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Orthrozanclus Conway Morris and Caron 200719

Orthrozanclus elongata Zhao et Smith n. sp. Figs 1 and 2.

Type material. NIGPAS 164892 (Fig. 1f–l), holotype; 164893 (Fig. 1a–e), paratype, each comprising part and 
counterpart and preserved in the characteristic Chengjiang fashion21 as weathered aluminosilicate films associ-
ated with superficial iron oxides.

Provenance. Maotianshan Shale, Yu’anshan Formation, Eoredlichia-Wutingaspis Zone, Cambrian Series 2, Stage 
3. The holotype was collected from Jiucun, near Chengjiang (24°41’33” N, 102°59’26” E); the paratype from 
Yuanbaocun, Chenggong, Kunming (24°49’24” N, 102°49’14” E), Yunnan, southwest China.

Diagnosis. Species of Orthrozanclus with elongate (c. 1:7) aspect ratio. Dorsal sclerites mineralized, oblong in 
aspect, occurring in regular rows. Dorsolateral spinose sclerites flat, ribbed and blade-like, without central cavity.

Description. The two specimens of Orthrozanclus elongata n. sp. (Fig. 1) are 20 mm long and a uniform 3 mm 
in width. Their dorsal scleritome bears an anterior valve and three zones of sclerites: a medial zone covers the 

Figure 1. Orthrozanclus elongata n. sp. (a–e) NIGPAS164893, paratype. (a,b) part and counterpart of entire 
specimen. (c) part, anterior region, dorsal sclerites exhibit relief. (d) counterpart, showing ‘fanning’ of spines 
at posterior. (e) counterpart, showing arrangement of spines and ventrolateral sclerites. (f–l) NIGPAS164892, 
holotype. (f,g) part and counterpart of entire specimen. (h) part, anterior region, dark field illumination 
emphasizes relief of ventrolateral sclerites. (i) counterpart, anterior region, bright field illumination emphasizes 
sclerite margins. (j) counterpart, left lateral region showing inclination of spines relative to the bedding plane –  
the anterior edge (+) is raised above the posterior edge (−) – and ribs on ventrolateral sclerites (k) and 
dorsolateral spines (l). Abbreviations: ds, dorsal sclerites; sp, spines; valv, valve; vls, ventrolateral sclerites. 
Bars = 1 mm except k, 100 µm.
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flattened dorsal surface of the organism, and inner and outer peripheral zones surround its flanks. Its rectangular 
outline, rounded anterior and posterior ends and overall architecture resemble that of O. reburrus.

The medial sclerite zone comprises transverse chevron-like rows, each containing fourteen sclerites, seven on 
each side (Figs 1c and 2). These sclerites measure 220 × 90 µm, are oblong to teardrop shaped, and lie flat to the 
body. Their pronounced three-dimensionality distinguishes these sclerites from those in other zones, and – in 
view of the well-defined margins of the individual sclerites – indicates an originally mineralized composition. 
Neither phosphatization of labile tissue22 nor secondary infilling of original cavities (as observed in Wiwaxia and 
O. reburrus8,19) are consistent with the observed preservation. The enhanced relief of the dorsal elements relative 
to the dorsolateral and ventral sclerites presumably reflects original three-dimensional structure.

The spinose dorsolateral sclerites reach 6 mm in length, and form a c. 45° angle to the body, with their tips 
directed posteriad (Figs 1 and 2). They are regularly spaced (Fig. 1h–j) in a single series that encircles the body, 
surrounding the anterior margin of the valve and the posterior of the dorsal area (Fig. 1d). The spines bear ribs, 
but are otherwise flat in cross-section; in contrast to O. reburrus, there is no evidence of a central cavity (Fig. 1j–l). 
Their flat surfaces lie at an angle of 20–45° to the bedding surfaces – indicating a high original angle (Fig. 1j). 
Apparent differences in width between spines can be attributed to differential angles of burial relative to the bed-
ding surface. The proximal configuration of the spines (Fig. 1l) has a putative similarity to the auricle of certain 
Halkieria sclerites10.

Dagger-shaped (cultrate) sclerites occupy the lateral surfaces of the organism, extending to partly enclose the 
ventral surface (Fig. 1h). The best-preserved sclerites bear a bilaterally symmetrical series of ribs (Fig. 1k). These 
sclerites (but not the spines or dorsal sclerites) encircle the valve to enclose the anterior margin of the organism 
(Fig. 1h); the tips of the sclerites were originally directed dorsally, rather than radially as depicted for O. reburrus.

The valve is denoted by a region of pronounced relief, presumably reflecting a robustly mineralized original 
constitution (Fig. 1c–d,h). The shape of the valve suggests a posterior umbo: though the opposite has been inter-
preted in O. reburrus, the umbo is difficult to locate with certainty in either taxon. The posterior and anterior 
margins of the valve are overlapped by sclerites of the medial and outer peripheral zones respectively (Fig. 1h).

A three-dimensionally preserved structure, presumably representing the digestive tract, follows the main body 
axis (Figs. 1d,h and 3a). As with the presumed gut of O. reburrus, this begins slightly posterior to the shell; the gap 
between the gut and the shell marks a 90° bend in the axis of NIGPAS 164892, reminiscent of an equivalent bend 
in many Halkieria fossils (see ref.16 and Fig. 3b).

Discussion
The new material strengthens the case for a close relationship between Orthrozanclus and Halkieria (Fig. 3). 
Mineralized dorsal sclerites, occurring in oblique transverse rows behind an anterior shell, are now evident in 
both taxa (Fig. 3a–b,d–e) – even if Orthrozanclus has no counterpart to the posterior shell of Halkieria. And each 
taxon exhibits two peripheral sclerite zones: the inner, dorsolateral zone contains long spines in Orthrozanclus 
and short cultrate sclerites in Halkieria; the outer, ventrolateral zone bears regularly spaced cultrate sclerites in 
Orthrozanclus and siculate sclerites in Halkieria (Fig. 3a–b,d–e). Homology of the zones is thus recognized based 
on their position, rather than the shape or constitution of the sclerites that they contain.

An equivalent sclerite arrangement was once envisaged in Wiwaxia15,23, but recent studies8,9 have shown that 
the Wiwaxia scleritome conforms to a metameric architecture, comprising 8–9 transverse rows (Fig. 3c,g). Even 
though the most lateral sclerites are morphologically distinct in certain Wiwaxia species, they belong to the same 
transverse rows as the medial sclerites, rather than forming a distinct peripheral zone that surrounds the entire 
circumference of the organism9,24 (Fig. 3c). The two dorsal rows of spines in Wiwaxia are highly variable in their 
number, size, spacing, and orientation, both within and between species8,15,25, so do not form a distinct region 
of the scleritome architecture. As such, the peripheral sclerite zones in Orthrozanclus (Fig. 3a) and Halkieria 

Figure 2. Reconstruction of Orthrozanclus elongata n. sp. in life.
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(Fig. 3b) have no counterpart in Wiwaxia, and it is not clear that the two scleritome layouts are equivalent in any 
meaningful way – undermining the case for a ‘halwaxiid’ clade.

Are halkieriids molluscs? At a broader taxonomic level, perceived similarities in scleritome construction 
are said to indicate a close relationship between halkieriids and aculiferan molluscs4,6,19,26–28. This position has 
most recently been propounded based on the Ordovician aculiferan Calvapilosa, which has been interpreted as 
a close relative of halkieriids28. The evidence that Calvapilosa is an aculiferan is strong; the evidence that it is a 
halkieriid warrants more careful consideration.

Sclerites – a likely inheritance from the ancestral lophotrochozoan17,18,29,30 – have been assembled into scleri-
tomes on multiple occasions: the scleritomes of the scaly-footed gastropods31 and chrysopetalid annelids32,33, for 
example, represent independent innovations that are demonstrably unique to the respective clades31. Indeed, 
multiple groups incorporate both shell-like valves and mineralized plates into dorsal imbricating skeletons – wit-
ness machaeridians, Pelagiella and certain tommotiids, who have affinities with annelids, gastropods and brachi-
opods, respectively34–37.

It is therefore significant that the Calvapilosa scleritome prominently lacks the differentiated sclerite morphol-
ogies and peripheral morphological zones that characterize halkieriids. Halkieriid sclerites exhibit a broad range 
of morphologies, but none resemble the slender, spinose sclerites of Calvapilosa28. The central cavity present in 
both halkieriid and Calvapilosa sclerites has little taxonomic value (discussed in ref.8). The shell of Calvapilosa is 
a markedly different shape to that of Halkieria, and bears depressions (interpreted as aesthete canals) that have no 
counterpart in halkieriid shells.

Figure 3. Scleritome arrangement in Orthrozanclus elongata n. sp. (a, NIGPAS164892), Halkieria evangelista 
(b, Sedgwick Museum of Earth Sciences  X24914.2) and Wiwaxia corrugata (c, Royal Ontario Museum 61510). 
The Orthrozanclus (d) and Halkieria (e) scleritomes are arranged in three concentric zones: a medial zone of 
oblique transverse rows (vermillion); a dorsolateral ‘inner peripheral’ zone (purple), containing long spines in 
Orthrozanclus and cultrate sclerites in Halkieria; and a ventrolateral ‘outer peripheral’ zone, containing cultrate 
(Orthrozanclus) or siculate (Halkieria) sclerites. Dailyatia bacata (f) is reconstructed as having a medial region 
containing A and B sclerites and a single peripheral zone of C sclerites. The approximately 4:1 ratio of C1:A 
sclerites and 4:2 ratio of C2:B sclerites35 is taken to indicate that C sclerites occur at twice the frequency of 
elements in the medial zone. The Wiwaxia scleritome (g) comprises eight transverse rows (shaded) intersected 
by two rows of intermittently spaced spines.
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In the absence of any demonstrably equivalent constructional features or an unambiguously close genetic 
relationship, it is difficult to defend the homology of the halkieriid scleritome with that of Calvapilosa.

One thing that Calvapilosa (and Wiwaxia7) does establish is that where a radula is present, it preserves readily 
in Burgess Shale-type conditions. But importantly, this robust and distinctive multi-row mouthpart is promi-
nently absent in both Orthrozanclus and Halkieria. (A potentially radula-like structure evident in a single speci-
men of Halkieria16 corresponds in angle and dimensions with diagonal displacements of sclerites elsewhere in the 
scleritome, and is not associated with any diagnostically radular characteristics, such as teeth38; its identification 
as a radula must be considered unproven.) As a radula was present in the ancestral mollusc39, and perhaps deeper 
in the trochozoan lineage9, its absence in halkieriids is difficult to reconcile with a molluscan affinity.

Could halkieriids be tommotiids? One set of organisms whose scleritomes exhibit an intriguing similar-
ity with those of halkieriids are the camenellan tommotiids, a group that is implicated in the earliest ancestry of 
brachiopods40–43. The scleritome of the kennardiid camenellan Dailyatia35 has been reconstructed as comprising 
median and peripheral fields (Fig. 3f). The medial region bears a series of transverse ‘rows’ of one or two sclerites 
(A and B sclerites); the peripheral field bears dorsally-directed sclerites with a distinct morphology (C sclerites). 
As no fully articulated camenellan scleritomes have yet been found, this comparison does of course warrant a 
degree of caution, particularly in view of the tube-like configuration of other tommotiid scleritomes37,44–46 – but 
the general arrangement reconstructed from sclerite asymmetry, fused arrays of sclerites, morphological propor-
tions and relative sclerite frequency is fundamentally compatible with a halkieriid-like construction. Taking this 
further, sclerites in the peripheral zones of camenellan scleritomes occur in dextral and sinistral forms35,47, as do 
the sclerites of Halkieria10 and – in view of the symmetrical scleritome arrangement revealed by O. elongata n. 
sp. – those of Orthrozanclus. Camenellan sclerites show continuous variation within a particular morphological 
category47 – as do spines in the dorsolateral zone of the Orthrozanclus scleritome. Certain camenellan sclerites48 
exhibit a tuberculate ornament and apical tip that correspond closely to the sclerites of, for example, Halkieria 
mira (see Figs 4, 6 in ref.49). More speculatively, the camerate construction of certain halkieriid sclerites6,10 might 
find a parallel in the internal chambers of Kelanella sclerites or Micrina valves47,50.

Looking more widely, the paired muscle scars and shelly internal projections evident in Morph A valves of 
Oikozetetes51,52, some of the best documented halkieriid shells, have possible parallels in the equivalent paired 
muscle scars and internal processes present in the mitral sclerite of the tommotiids Micrina44 and Dailyatia35 and 
the operculum of hyolithids53 (potential relatives of tommotiids54).

In view of these similarities, we therefore propose that halkieriids and camenellans may be closely related 
(Fig. 4). If camenellans are derived from an ancestrally tube-dwelling tommotiid55, then a vagrant, slug-like habit 
would represent an apomorphy of a halkieriid + camenellan clade; alternatively, the halkieriid condition may be 
ancestral for the tommotiid + brachiopod lineage16,40, with the bivalved condition perhaps arising through pae-
domorphic retention of an ancestral state41.

One obvious objection to this taxonomic hypothesis is that camenellan elements are composed of calcium 
phosphate, whereas halkieriids secreted calcium carbonate, probably in the form of aragonite56. This said, tom-
motiids and early brachiopods deploy a wide variety of biominerals (Fig. 4): examples exist of non-mineralized, 
agglutinated, aragonitic, calcitic, phosphatic, and mixed calcite-phosphate shells54,57,58.

Figure 4. Possible position of halkieriids within tommotiids. The common ancestor of Trochozoa is 
reconstructed as a non-mineralizing scleritomous organism with serially repeated elements. The presence of 
biomineralized elements is denoted by line colour, with changes in biomineral marked by circles.
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Switching from one biomineral to another is generally the exception rather than the rule59,60, but members of 
the brachiopod lineage have nevertheless changed their primary biomineral from phosphate to calcite61,62, from 
calcite to aragonite63, and from phosphate to a non-mineralized configuration64; indeed, some living brachiopods 
switch from using silica to calcite as they grow65.

On a broader view, biomineralization has evolved multiple times within Metazoa66, seemingly coming and 
going in Ediacaran lineages according to prevailing environmental conditions67. If this situation persisted into 
the early Cambrian, it is possible to envision a predominantly non-mineralised brachiopod stem lineage that 
obtained biomineralization on multiple occasions, each time reflecting the prevailing seawater chemistry. The 
aragonite mineralogy of halkieriids and hyoliths arose in the aragonite seas of the Fortunian; the calcitic and phos-
phatic mineralogies of tommotiids and crown-group brachiopods arose in the calcite seas of the Tommotian59. 
Linguliforms and tommotiid-like specimens from Burgess Shale-type deposits64,68,69 attest to the persistence of 
non-mineralized skeletons across the brachiopod total group into the mid-Cambrian. In any case, whether mod-
ification or multiple innovations account for the diversity of biomineral use in brachiopods and tommotiids, the 
carbonate elements of halkieriids clearly fit within this gamut.

Conclusion
Because halkieriid-like sclerites occur so early in the Cambrian period70,71, their affinity has profound implica-
tions for the timing of early trochozoan evolution. Removing halkieriids from Mollusca would shift the origin of 
this phylum significantly later: notwithstanding hyoliths (now interpreted as brachiozoans, i.e. brachiopods or 
phoronids54) and helcionellids (which lack any compelling molluscan apomorphies), there are no strong candi-
dates for crown group molluscs until the Tommotian, and no unequivocal cases until the Late Cambrian1.

If, on the other hand, brachiozoans evolved from a halkieriid-like ancestor, then multi-element scleritomes 
characterise the earliest brachiozoans as well as molluscs and annelids9 (Fig. 4). The absence of such sclerites 
among Ediacaran and earliest Cambrian fossil assemblages55 either requires special taphonomic pleading or gen-
uinely denotes that Trochozoans had not yet originated. The subsequent appearance of a rich diversity of exo-
skeletal elements in the early Cambrian fossil record12,72 points to a very rapid origin and divergence of the key 
lophotrochozoan phyla in the first few million years of the Cambrian period – representing a truly ‘explosive’ 
evolutionary radiation.

Methods
The paratype was prepared with a fine blade. Photographs were taken using a Zeiss Stereo Discovery V16 micro-
scope system and processed using TuFuse and the GNU image manipulation program.

Data availability. Specimens are accessioned at the Nanjing Institute of Geology and Palaeontology, Chinese 
Academy of Sciences (NIGPAS); high resolution images are available at the FigShare repository73.
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